PRACTICAL GUIDE

Regeneration
Start-up Procedure and Normal Regeneration

START UP PROCEDURE

Before the first regeneration, the resins must be thoroughly backwashed to remove from the resin bed any particles or debris.
If demineralised water is available, the first regeneration is identical to a normal regeneration, except for the quantity of regenerant that must be twice the normal amount. In such a case, the simplest way is to double the injection time for each regenerant.

If demineralised water is not available, the initial regeneration must be done beginning always with the cation exchange column. This is because any hardness contained in the raw water may precipitate with caustic soda, so that decationised water must be used for the regeneration and rinse of the anion exchange column.

If soft water is available on the site, use it rather than raw water containing hardness for the first regeneration. After the first regeneration, using raw or soft water, the water produced by the ion exchange system will not be as good as that of the subsequent cycles, but will be of sufficient quality to clean the pipes, tanks and other parts of the system.

Regenerate the cation column normally, except that the dilution water will be raw water, and continue the acid displacement and fast rinse as prescribed. Then, use the water from the cation column (i.e. decationised water) to dilute the caustic soda and rinse the anion column after its regeneration.

N.B.: Another alternative is to use a cation exchange resin in the regenerated form. In this case make sure to calculate the volume based on the Na form taking into account the reversible swelling. Preferably, the anion resin should be loaded into its column using decationised water, i.e. after cation resin regeneration.

SCHEMATICS OF REGENERATION

The regeneration schematics shown here are valid for any regeneration, including the initial one. There may be however a few differing details:

Backwash

In counterflow regenerated plants, the resin should not be backwashed after each run. It should be thoroughly backwashed before the initial regeneration, and then only when necessary, e.g. when the pressure drop across the resin bed exceeds more than 1.5 times its normal value, or when large amounts of suspended matter have entered the bed.

Regenerant dilution

Caustic soda must be diluted with demineralised water. Only for the first regeneration, when such water is not available, must NaOH be diluted with decationised water, as shown above in steps 5 and 6. For subsequent regenerations, these steps must be done with demineralised water. Acid must be diluted with decationised or demineralised water. It is often simpler in design and operation to use demineralised water throughout. For the initial regeneration only, softened water or filtered water can be used.
Packed beds

Amberpack and some other packed bed systems operate exactly the opposite way: the service run is performed upflow, and regeneration is downflow. All principles presented here remain valid for such systems. Only the direction of flow must be reversed in each step. Backwash, when required, is done upflow, in an auxiliary column.

Example of regeneration schematics

![Regeneration Schematics](image)

This example is for downflow loading, upflow regeneration with bed holddown

Rohm and Haas/Ion Exchange Resins - Philadelphia, PA - Tel. (800) RH AMBER - Fax: (215) 409-4534
Rohm and Haas/Ion Exchange Resins - 75579 Paris Cedex 12 - Tel. (33) 1 40 02 50 00 - Fax : 1 43 45 28 19

http://www.amberlite.com

AMBERLITE is a trademark of Rohm and Haas Company, Philadelphia, U.S.A. Ion exchange resins and polymeric adsorbents, as produced, contain by-products resulting from the manufacturing process. The user must determine the extent to which organic by-products must be removed for any particular use and establish techniques to assure that the appropriate level of purity is achieved for that use. The user must ensure compliance with all prudent safety standards and regulatory requirements governing the application. Except where specifically otherwise stated, Rohm and Haas Company does not recommend its ion exchange resins or polymeric adsorbents, as supplied, as being suitable or appropriately pure for any particular use. Consult your Rohm and Haas technical representative for further information. Acidic and basic regenerant solutions are corrosive and should be handled in a manner that will prevent eye and skin contact. Nitric acid and other strong oxidizing agents can cause explosive type reactions when mixed with Ion Exchange resins. Proper design of process equipment to prevent rapid buildup of pressure is necessary if use of an oxidizing agent such as nitric acid is contemplated. Before using strong oxidizing agents in contact with Ion Exchange Resins, consult sources knowledgeable in the handling of these materials.

Rohm and Haas Company makes no warranties either expressed or implied as to the accuracy of appropriateness of this data and expressly excludes any liability upon Rohm and Haas arising out of its use. We recommend that the prospective users determine for themselves the suitability of Rohm and Haas materials and suggestions for any use prior to their adoption. Suggestions for uses of our products the inclusion of descriptive material from patents and the citation of specific patents in this publication should not be understood as recommending the use of our products in violation of any patent or as permission or license to use any patents of the Rohm and Haas Company. Material Safety Data Sheets outlining the hazards and handling methods for our products are available on request.